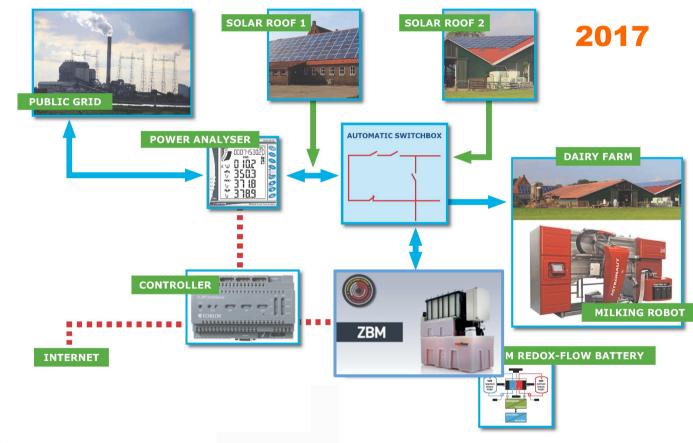


One-year field test of a fast acting zinc-bromine 20kw/60kwh flow battery system to develop a business model for distributed small and medium sized storage in the Dutch electricity market.

Jeroen de Veth CEO

Project objectives

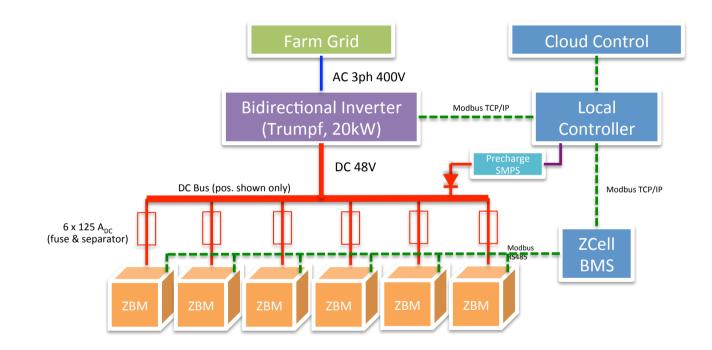
- Constructing a business model for distributed storage in The Netherlands linking multiple farms.
- Integrating self consumption of locally produced renewable energy and electricity market opportunities by means of an aggregator.
- Constructing a fast acting, predictive and market aggregator operated battery system.
- Gathering live data from storage system as well as market segments and simulate multiple business case scenario's.



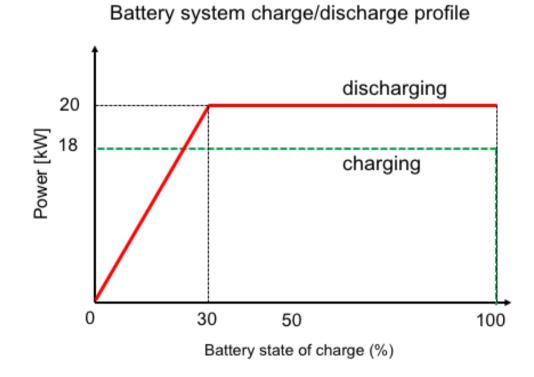
Facts and figures

- Installed 23 May 2017 in Vierakker (Netherlands)
- Dairy farm, consumes 70.000 kWh/a, 50kWp PV generation
- Storage: 6 Redflow ZBM2 modules, 60kWh in total
- Inverter: Trumpf TruConvert AC 3020, 20kW bidirectional
- Data collection: June to December 2017
- Co-financed by EU and region
- Partners:
 - ICL-IP
 - AgroPower (energy market aggregator)
 - University of Applied Science Arnhem-Nijmegen
 - Dutch Farmers Association

PHOTON FARMER, VIERAKKER


Storage system: 20kW-60kWh

Completed May 2017



Basic system schematic

Charge-discharge curves

Full power discharge test

X	ZCell BMS / Elektronenboer	Status	Configuration -	Tools -	Graphs	Logs≁	22:17	[Login]
	V1.3.1							

System Status - Elektronenboer

Unit Serial O	Status 0	SoC	0	Contacts @	0	Amp Hours	Volts	Amps 😧	100	Temp 😧	Last Maint 0	Time Limit 😡	Firmware	Mode
System	ОК	44.4%	Ŧ	C D S	ĵ	533.0 AH	46.0 V	426.9 A	19.7 kW	40.5 C				
1 628	ОК	64.3%	Ŧ	CDS	ĵ	128.5 AH	46.2 V	80.8 A	3.7 kW	35.9 C	1d10h	1d14h	32.17.0	Run (702)
2 630	OK	65.5%	ŧ	CDS	ĵ	131.0 AH	46.2 V	76.7 A	3.5 kW	36.4 C	1d10h	1d13h	32.17.0	Run (702)
3 631	ОК	63.4%	ŧ	CDS	ĵ	126.7 AH	46.2 V	80.8 A	3.7 kW	37.3 C	1d10h	1d14h	32.17.0	Run (702)
4 632	Discharge	<mark>7.</mark> 9%	ŧ	CDS	ĵ	15.7 AH	46.0 V	49.0 A	2.3 kW	38.3 C	4d2h	-6h7m	32.17.0	Run (702)
5 627	Discharge	<mark>6</mark> .2%	ŧ	CDS	ĵ	12.4 AH	46.0 V	54.5 A	2.5 kW	38.5 C	4d3h	-6h19m	32.17.0	Run (702)
6 633	ОК	59.4%	Ŧ	CDS	ĵ	118.7 AH	46.3 V	85.1 A	3.9 kW	40.5 C	1d10h	1d14h	32.17.0	Run (702)

High SOC charging behaviour

ZCell BMS / Elektrone	enboer Status	Configuration -	Tools -	Graphs	Logs -	16:19	admin [Logout]
-----------------------	---------------	-----------------	--------------------	--------	-------------------	-------	----------------

System Status - Elektronenboer

Unit Serial 😡	Status	SoC	0	Contacts	0	Amp Hours	Volts	Amps 😧	KW 🛛	Temp 😡	Last Maint	Time Limit 😡	Firmware 😧	Mode 😧
System	ОК	60.9%	+	CDS	ĵ	730.2 AH	57.6 V	-121.4 A	-7.0 kW	37.0 C				
									\frown					
1 628	OK	83.5%	×	CDS	Ĵ	167.0 AH	57.7 V	-39.6 A	-2.3 kW	32.0 C	11h20m	2d17h	32.17.0	Run (702)
2 630	OK	90.9%	+	CDS	ĵ	181.8 AH	57.7 V	-40.8	-2.4 kW	32.0 C	2d1h	22h45m	32.17.0	Run (702)
3 631	OK	87.3%	+	CDS	ĵ	174.6 AH	57.7 V	-41.0 A	-2.4 kW	34.6 C	10h22m	2d17h	32.17.0	Run (702)
4 632	Maintenance	<mark>3</mark> .5%	-	CDS	ĵ	6.9 AH	44.7 V	1.2 A	0.1 kW	32.8 C	2d16h	22h16m	32.17.0	Run (705)
5 627	Maintenance	0.0%	-	CDS	ĵ	0.0 AH	0.0 V	0.3 A	0.0 kW	33.9 C	2d16h	22h40m	32.17.0	Run (712)
6 633	OK	100.0%	- 1	CDS	Ĵ	199.9 AH	54.5 V	0.0 A	0.0 kW	37.0 C	2d2h	21h54m	32.17.0	Run (702)

System economy & Business cases

Economic drivers

- Electricity grid absent or unreliable NL: not really
- High electricity tarifs or taxes NL: not really
- Maximizing self consumption NL: balancing scheme ENDING
- Subsidies NL: national on pilots and demonstration + EU
- Electricity market segments
 - Day Ahead market NL: low tarifs
 - Balancing market NL: interesting, but efficiently organised
 - Frequency Containment Reserve NL open market, prices going down
 - Emergency Power market NL high power demand, no multitasking

Simulation example

Day-Ahead + Balancing Markets (Battery Only)

• van Arnhem en Nijmegen HAN University of Applied Sciences

• Charge if

- Combination of APX and Balancing markets strategies
- Discharge if:
 - Combination of APX and Balancing markets strategies
- Do nothing if otherwise.

Position at the APX (Day Ahead) market

- Charge from: 01:00 06:00 & 12:00 16:00
- Discharge from: 07:00 12:00 & 16:00 21:00

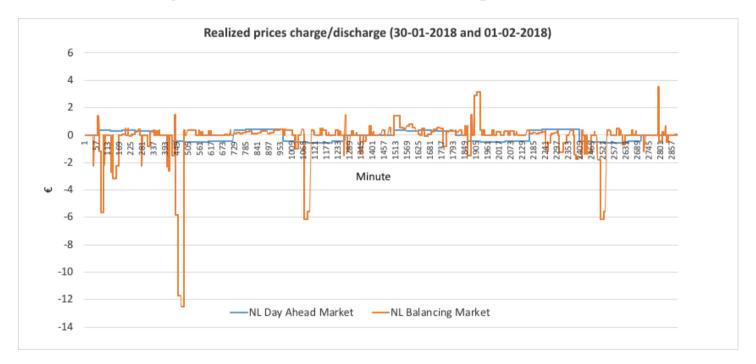
RESULTS

<u>POWER</u>

Max. power (imported from grid) = 18,00 [kW] Avg. power (imported from grid) = 14,26 [kW] Max. power (exported to grid) = -20,00 [kW] Avg. power (exported to grid) = -16,56 [kW]

ENERGY

Total Energy - APX Consumption Position = **32,850 [MWh]** Total Energy Actually Consumed = **15,498 [MWh]** Total Energy - APX Supply Position = **-36,500 [MWh]** Total Energy Actually Supplied = **-15,487 [MWh]** Net energy = **0,011187 [MWh]**



COST/EARNINGS

Cost of imported energy = 1.464,56 [EUR] Earnings from exported energy = -3.340,223 [EUR] Total Earnings (APX + Balancing Markets) = **-1.875,66 [EUR]** • Total Earnings from APX Market = -509,26 [EUR] • Total Earnings from Balancing Market = -1.366,40 [EUR]

2 day market earning example

Simulation results

	Self- consumption	Balancing Market (Battery only)	Balancing Market (Battery + Self- consumption	APX+Balancing (Battery only)	APX+Balancing + SelfConsumption
Max. power (imported from grid) [kW]	47,5	18	56,81	18	56,81
Max. power (exported to grid) [kW]	-54,0	-20	-51,143	-20	-51,143
Total imported energy (MWh]	58,78	11,758	71,20	15,498	72,50
Total exported energy [MWh]	-13,20	-11,746	-28,85	-15,487	-30,143
Net energy [MWh]	45,58	0.012	42,35	0,011187	42,357
Cost of imported energy [€]	+	424,67	2.780,04	1.464,56	2.998,96
Cost of Exported energy [€]	-	-1.761,54	-1.847,13	-3.340,223	-2.597,83
Net Cost of Energy [€]	+	€-1.336,86	€932,91	€-1.875,66	€ 401,13

Wrap-up

- Market integration can efficiently generate extra earnings for distributed storage, combining multiple sites under one aggregator.
- NL electricity market is highly efficient, so distributed storage must be combined with strong local benefits to reach a positive business case.
- ZnBr redox-flow technology performed very well in this project. Surprisingly flat charge profile.

Energy Storage & System Integration

Thank you for your attention.

Jeroen de Veth MSc CEO

E: jdeveth@trinergie.nl T: +31623211862