# Bromine complexation agents in H<sub>2</sub>/Br<sub>2</sub> flow battery cathodes: Physicochemical processes and

their influence on cell operation and cell performance

#### <u>M. Kuettinger</u>, R. Brunetaud, P. Fischer, J. Tuebke



michael.kuettinger@ict.fraunhofer.de

Fraunhofer ICT / Redox Flow Batteries / Germany

Michael Kuettinger / Slide 1 / 12/07/18



## Motivation for Cathodes in $H_2/Br_2$ RFB

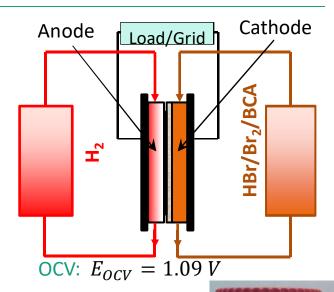
Br

- Fast reaction kinetics at anode and cathode
- Energy density up 225 Wh L<sup>-1</sup> (6.7 M HBr)
- Bromine catholyte: reactand = electrolyte

Bromine storage as polybromide:

Catholyte:  $Br_2 + Br^- \rightleftharpoons Br_3^-$ 

Catholyte:  $xBr_2 + Br^- \rightleftharpoons Br_{1+2x}^-$ 


Challange of bromine cathode:

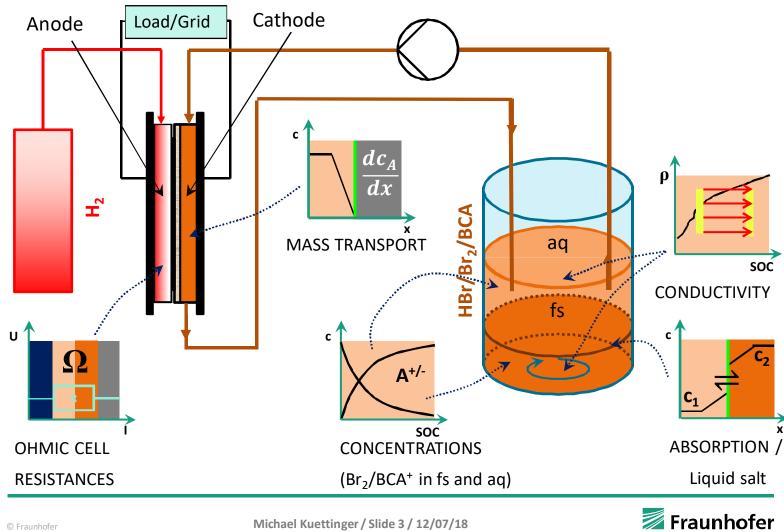




ammonium cations

Capture bromine in a separate phase



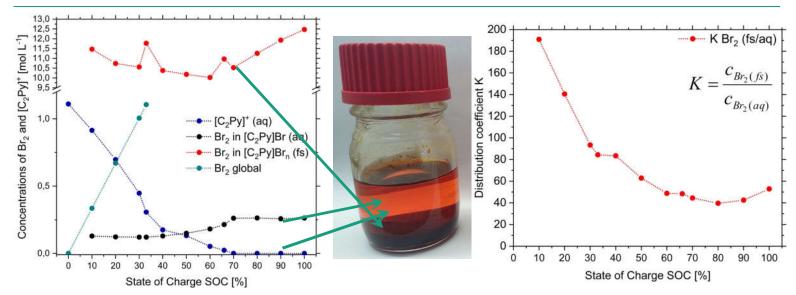

Ethylpyridiniumbromide: C<sub>2</sub>PyBr SOC 0: 7.7 M HBr and 1.11 M C<sub>2</sub>PyBr SOC 100: 1 M HBr; 3.35 M Br<sub>2</sub> and 1.11 M C<sub>2</sub>PyBr



© Fraunhofer

Michael Kuettinger / Slide 2 / 12/07/18



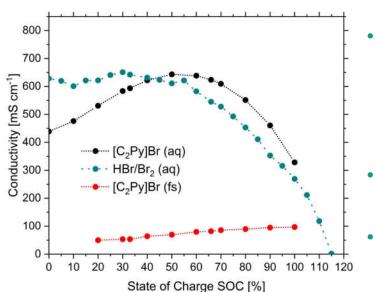



# Influences of [C<sub>2</sub>Py]Br on cell perf. at various SOC?

© Fraunhofer

Michael Kuettinger / Slide 3 / 12/07/18

How strong is Br<sub>2</sub> bound to [C<sub>2</sub>Py]<sup>+</sup>?




- Bromine concentration in fused salt around 11 M Br<sub>2</sub> >>> 640 Wh L<sup>-1</sup>
- Strong complexation of Br<sub>2</sub> with [C<sub>2</sub>Py]<sup>+</sup> ... 0.35 M Br<sub>2</sub> vs. 3.35 M Br<sub>2</sub> at SOC 100 leading to a safer catholyte

$$BCA^+(aq) + Br^-(aq) + xBr_2(aq) \rightleftharpoons BCABr_{2x+1}(fs)$$

 Complexation of Br<sub>2</sub> with C2Py<sup>+</sup> leads to falling C2Py<sup>+</sup> concentration in aqueous phase

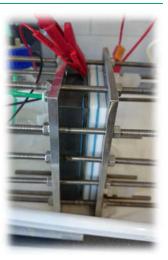


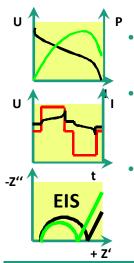


**Conductivity of catholyte aq + fs** 

 Fused salt phase showing conductivities between 45 and 90 mS cm<sup>-1</sup>

- Conductivities of pure HBr/Br<sub>2</sub>/H<sub>2</sub>O phase at around 625 mS cm<sup>-1</sup> for SOC 0 to SOC 50 and falling for SOC > 60. The proton amount in the electrolyte falls due to cell reaction.
  - C<sub>2</sub>Py<sup>+</sup> limits the conductivity in accordance to concentration plot (445 mS cm<sup>-1</sup>)
  - Complexation of C<sub>2</sub>Py<sup>+</sup> with Br<sub>2</sub> and extraction of fused salt leads to rising conductivities for SOC 0 (445 mS cm<sup>-1</sup>) to SOC 60 (643 mS cm<sup>-1</sup>)


#### Bromine extraction:

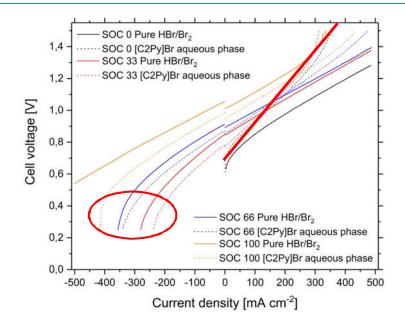

 $BCA^{+}(aq) + Br^{-}(aq) + xBr_{2}(aq)$  $\Rightarrow BCABr_{2x+1}(fs)$ 

Michael Kuettinger / Slide 5 / 12/07/18

# $H_2/Br_2 RFB - Celltest with C_2Py^+$

- Bromine cathode aqueous phase pumped around
  - Graphite felt (GFA 5, SGL, Carbon, D)
  - Current collector Glassy Carbon (Sigradur G, HTW, D)
- Hydrogen anode / MEA- 40 cm<sup>2</sup> active area (membrane)
  - Nafion 117<sup>®</sup>, 3 mg Pt cm<sup>-2</sup> on carbon cm<sup>2</sup> surface) + GDL (BC 25, SGL Carbon, D)
  - 100 mL min<sup>-1</sup> H<sub>2</sub> flow (nonrecyclable)

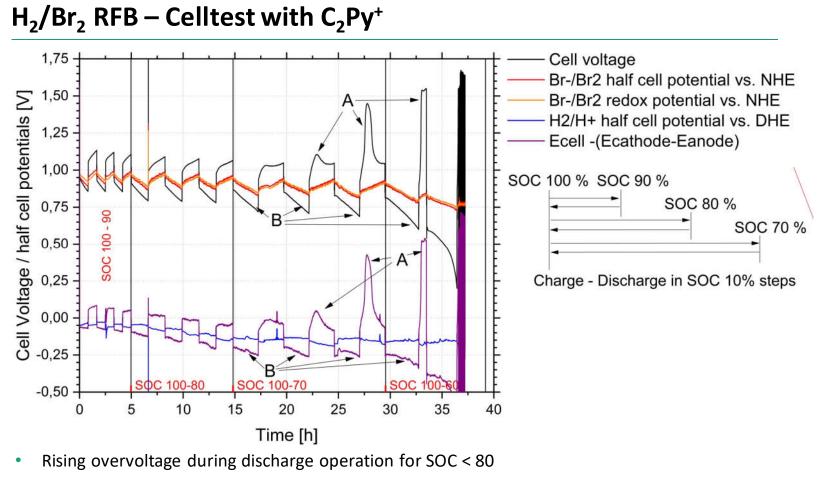





- Linear sweep potentiometry: +/- 1.25 mA cm<sup>-2</sup> s<sup>-1</sup> in the range of 0 to 500 mA cm<sup>-2</sup> threshold points: 0.25 V and 1.5 V
- Galvanostatic cycling test +/- 50 mA cm<sup>-2</sup>; threshold points: 0.25 V and 1.5 V including detection of half cell potentials and redox potential of the catholyte
- Ohmic cell resistances by galvanostatic electrochemical impedance spectroscopy (EIS) Amplitude: +/- 10 mA cm<sup>-2</sup>

© Fraunhofer




### Linear sweep potentiometry with C<sub>2</sub>Py<sup>+</sup> and without

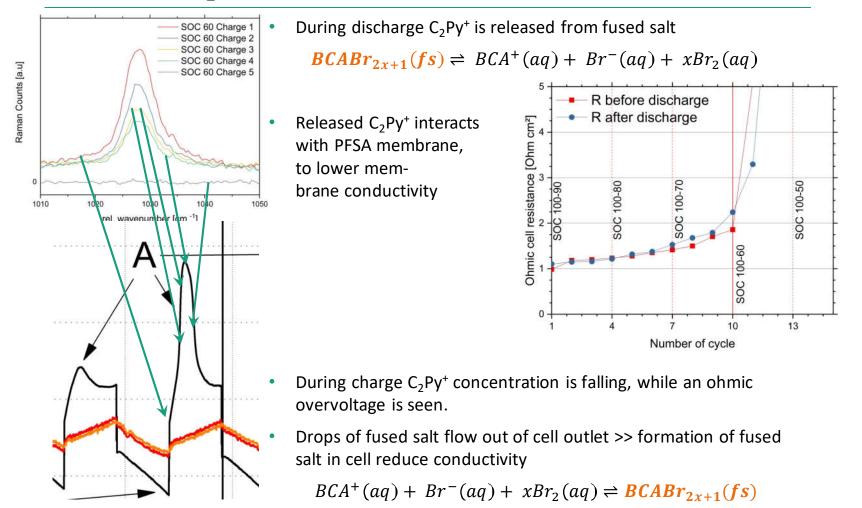


- Discharge LSP limited by mass transport limitation: c(Br<sub>2</sub>) lower for C<sub>2</sub>Py<sup>+</sup>
- Charge LSP with high ohmic resistances for SOC 0 % (2.2 Ohm cm<sup>2</sup>) and SOC 33 % (2.4 Ohm cm<sup>2</sup>), compared to SOC 66 % (0.93 Ohm cm<sup>2</sup>) and SOC 100 % (0.81 Ohm cm<sup>2</sup>).







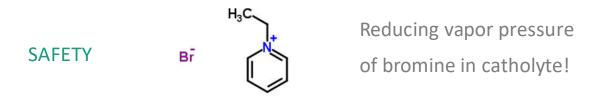

- Overvoltage peak during charge process (time dependent)
- Neither anodic potential nor cathodic potential follow these trends

Fraunhofer الله Fraunhofer

© Fraunhofer

Michael Kuettinger / Slide 8 / 12/07/18

#### Influence of C<sub>2</sub>Py<sup>+</sup> cations on cell performance




© Fraunhofer

Michael Kuettinger / Slide 9 / 12/07/18

Fraunhofer الله

### Conclusion

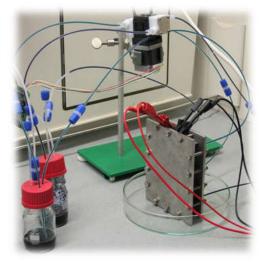


 Composition of electrolyte acts as an important parameter on the performance for the investigated H<sub>2</sub>/Br<sub>2</sub> single cell

HIGH C<sub>2</sub>Py<sup>+</sup> concentrations in aqueous phase lead to

- Decrease of conductivity
- Rising membrane resistance
- Formation of fused salt in cathode (lower conductivity)
- Limiting range of usable SOC to 30%

Got information about processes in cell limiting the PERFORMANCE


Different operation modes and electrolyte formulations shall limit the influence of  $C_2Py^+$ , while offering a safe catholyte

© Fraunhofer

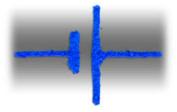


### THANK YOU FOR YOUR ATTENTION !!





Michael Kuettinger


michael.kuettinger@ict.fraunhofer.de

www.ict.fraunhofer.de

Fraunhofer Institute for Chemical Technology ICT Applied Electrochemistry / Redox flow batteries

Joseph-von-Fraunhofer Straße 7

#### 76327 Pfinztal/Germany



© Fraunhofer

Michael Kuettinger / Slide 11 / 12/07/18

